

INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR 721 302 DEPARTMENT OF CIVIL ENGINEERING

Dr. A. Shaw Associate Professor Phone: 03222 283424 283425® Fax: 03222 282254 /255303 e-mail: abshaw@civil.iitkgp.ac.in NO. IIT/CE/STR/TMT/21022 Date: 09th November 2022

1. Name of the Agency

: Consortium of M/s Teekay Managements, M/s Discon and M/s Basak Enginners, 6A Bidhannagar Road Kolkata-700067

2. Name of the work

: Development of Interception Diversion (I & D) network for existing drains falling in river Churni including sewage

treatment plant at Ranaghat Municipal Town

3. Reference No.

: TDBC/IITKGPR/42 dated 29.09.22

Brand Name- ELEGANT QST 550D: 8mm, 10mm, 12 mm, 16 mm and 20 mm dia.

Physical Properties of HYSD Bars

a) Proof stress, Tensile Strength & % Elongation

a) Proc	a) Proof stress, Tensile Strength & % Elongation					
Diameter	0.2 %	Tensile	%	Requirement as per IS:1786-2008 Amendment		
in mm	proof	Strength	Elongation	No. 1 November 2012, Table- 3		
	stress	(N/mm ²)		*		
	(N/mm^2)					
8	595.00	648.50	20.63	For Fe550D Grade		
				a) Tensile strength/Yield Stress ratio ≥ 1.08		
10	564.00	684.00	20.50	but Tensile strength not less than 600		
				N/mm ²		
12	590.50	711.00	20.00	b) Minimum Percentage elongation should		
				not be less than 14.50 % on gauge length		
16	593.00	689.50	16.25	c) Minimum 0.2% proof stress/yield stress		
				should not be less than 500 N/mm ²		
20	572.50	666.50	18.00			
		and the second second	and the second second	and the state of t		

b) Nominal Mass

Diameter	Observed Mass per Meter Run	Requirement as per IS:1786-2008 Table- 1
in mm		
8	0.390	0.395
10	0.586	0.617
12	0.875	0.888
16	1.536	1.580
20	2.433	2.470
20	2.133	

Q-1

Straturil & Distriction on Laboratory

c) Cross Sectional Area

Diameter	Observed Cross Sectional Area	Requirement as per IS:1786-2008 Table- 1
in mm	(mm²)	
8	49.55	50. 3
10	74.58	78.6
12	111.43	113.1
16	195.67	201.2
20	309.98	314.3

d) Bend Test

d) Belid Test				
Diameter	Observed Test Results	Requirement as per IS:1786-2008		
in mm				
8	There is no transverse crack in	The specimen shall be considered to have passed		
1	the bent portion.	the test if there is no transverse crack in the bent		
10	There is no transverse crack in	portion.		
	the bent portion.			
12	There is no transverse crack in			
	the bent portion.			
16	There is no transverse crack in			
	the bent portion.			
20	There is no transverse crack in			
	the bent portion.			

e) Rebend Test				
Diameter	Observed Test Results	Requirement as per IS:1786-2008		
in mm				
8	There is no fracture in the bent portion.	The specimen shall be considered to have passed the test if there is no fracture in the bent portion.		
10	There is no fracture in the bent portion.			
12 ·	There is no fracture in the bent portion.			
16	There is no fracture in the bent portion			
20	There is no fracture in the bent portion			

Remarks:

The steel has been tested in accordance with the standard IS: 1786-2008,

IS: 1599-1985, IS: 1608-1985.

Above results refer only to the sealed sample provided.

Consortium of M/s Teekay Managements, M/s Discon and M/s Basak Enginners, 6A Bidhannagar Road Kolkata-700067

Lab. In-charge Structural & Material Techniq Laboratory
Civil Engineering 1 mm, ment
I.I.T., Kharayyur-, 21002

(Dr. A. Shaw)

To